SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF NOVEL QUINAZOLINE DERIVATIVES

KOLLURI RAMESH, P. THRIVENI

Department of Chemistry, Vikrama Simhapuri University, Nellore-524003, A.P., India.

Accepted Date: 29/05/2016; Published Date: 27/06/2016

Abstract: A novel series of compounds were synthesised by C-C bond formation of Substituted Quinazolinones (1) with Substituted Boronic acids (2) to get 2,4 di substituted quinazoline (3a-3l) target compounds under mild conditions with good yields. The structures of new compounds were confirmed by IR and 1H NMR and 13C NMR spectral data.

Keywords: Quinazolines, Synthesis, Spectral data, Hetero cycles.
INTRODUCTION

Heterocyclic chemistry is a very important branch of organic chemistry accounting for nearly one-third of modern publications. In fact two thirds of organic compounds are Heterocyclic compounds. Heterocyclic chemistry comprises at least half of all organic chemistry Research World Wide.

Heterocyclic chemistry is the largest classical division of medicinal chemistry and display a broad range of industrial and pharmaceutical applications. Quinazoline (Fig 1) is a compound made up of two fused six member simple aromatic rings- benzene & pyrimidine ring. It is a yellow coloured compound, found usually in crystalline form. Medicinally it is used as antimalarial agent. It was first prepared by Gabriel in 1903 and first isolated from the Chinese plant aseru. The development of research on biological activity of quinazoline compounds started when the compound 2-methyl-1,3-aryl-4-quinazoline derivative was synthesized. This compound has soporific & sedative action. In last 10 to 15 years of research for medicinal has been characterized by significant advances. In 1968 only two derivatives were used, soporific & anticonvulsant- methaqualone and diuretic quinathazone. By 1980, about 50 kinds of derivatives of this class includes medicinal with different biological actions like soporific, sedative, tranquillizing, analgesic, anticonvulsant, antitussive, myorelexant, antirheumatic, hypotensive, anti-allergic, bron chodilating, anti-diabetic, cholagogue, diuretic, cystatic, antimalarial, spermicidal etc. The search for substances of cardiovascular agents begun in quinazoline derivatives after pharmacological screening of hypotensive activity of quinazoline that have a glycine amide or β-alanine amide residue in 3rd position. But unfortunately due to volume & density of general material on quinazoline derivatives, more specific problem of investigation of cardiovascular agents not has been successfully reflected in some reviews.

Quinazoline derivatives, which belong to the Nitrogen-containing Heterocyclic compounds, have caused universal concerns due to their widely and distinct biopharmaceutical activities. Researchers have already determined many therapeutic activities of Quinazoline derivatives, including anti cancer [1-4], antiinflammation[5-6], antibacterial[7-10], antivirus[11], anticytotoxin[12], antispasm[13], anti tuberculosis[14], anti oxidation[15], anti-malarial[16], anti-hypertension[17], anti-obesity[18], antipsychotic[19], anti diabetes[20], etc.
Encouraged by the diverse biological activities of Quinazoline Heterocyclic compounds, it was decided to prepare a new series of Quinazoline derivatives. The synthesis of the compounds as per the following Scheme I given below.

The synthetic route was depicted in scheme I

The structures of all synthesized compounds were assigned on the basis of IR, Mass, 1H NMR spectral data analysis. Further these compounds were subjected for antifungal and antibacterial activity.

MATERIALS AND METHODS

In this investigation chemicals were purchased from local dealer with S.D fine make was used. Chemicals were 99.99% pure; purity has been checked by thin layer chromatography and melting point. Conventional method has been used for synthesis of Quinazoline derivatives. Stirring and reflux method were used for synthesis of Quinazoline derivatives 3(a-r) respectively.

The synthetic route was depicted in scheme I

The title compounds 3(a-r) were synthesised in single step using different reagents and reaction conditions, the 3(a-r) were obtained in moderate yields. The structure were established by spectral (IR, 1H-NMR, 13C-NMR and mass) and analytical data.

![Synthetic Scheme](image-url)
EXPERIMENTAL SECTION

All reactions were carried out under argon in oven-dried glassware with magnetic stirring. Unless otherwise noted, all materials were obtained from commercial suppliers and were used without further purification. All solvents were reagent grade. THF was distilled from sodium benzophenone ketyl and degassed thoroughly with dry argon directly before use. Unless otherwise noted, organic extracts were dried with anhydrous Na$_2$SO$_4$, filtered through a fitted glass funnel, and concentrated with a rotary evaporator (20–30 Torr). Flash chromatography was performed with silica gel (200–300 mesh) by using the mobile phase indicated. The NMR spectra were measured with a 400 MHz Bruker Avance spectrometer at 400.1 and 100.6 MHz, for 1H for 13C, respectively, in CDCl$_3$ solution with tetra methyl silane as internal standard. Chemical shifts are given in ppm (δ) and are referenced to the residual proton resonances of the solvents. Proton and carbon magnetic resonance spectra (1H NMR and 13C NMR) were recorded using tetramethylsilane (TMS) in the solvent of CDCl$_3$-d or DMSO-d$_6$ as the internal standard (1H NMR: TMS at 0.00 ppm, CDCl$_3$ at 7.26 ppm, DMSO at 2.50 ppm; 13C NMR: CDCl$_3$ at 77.16 ppm, DMSO at 40.00 ppm).

Synthesis of 2, 4 di substituted quinazolines (3a-3r):

The solution of quinazolin-4-ones (1 equiv) in THF (2 ml) was treated with Tosyl chloride (1.2equiv) and Na$_2$CO$_3$ (2.5 equiv) at 60°C. After 30 minutes, boronic acid (1.2equiv), Pd(PPh$_3$)$_2$Cl$_2$ (0.05 equiv. 5 mol%), and H$_2$O (0.1ml) were added under air atmosphere. After the completion of the reaction as indicated by TLC, the solvent was evaporated, and the residue was purified on silica gel to provide the products 3a-3r.

2, 4-dipheny1quinazoline (3a):

Compound 3a was obtained as a white solid;

yield: 80%

mp 122-123°C.
1H NMR (400 MHz, CDCl$_3$) δ 7.51-7.61 (m, 7H), 7.88-7.90 (m, 3H), 8.15 (t, $J = 8.4$ Hz, 2H), 8.69 (dd, $J = 1.6$ Hz, 8.0Hz, 2H);

13CNMR (100 MHz, CDCl$_3$) δ 121.7, 127.0, 128.6, 128.7, 129.2, 129.9, 130.2, 130.5, 133.4, 137.7, 138.3, 152.0, 160.3, 168.3.

4-Phenyl-2-p-tolyl-quinazoline (3b):

![Compound 3b](image)

Compound 3b was obtained as a white solid;
yield: 88%;
mp 123-124$^\circ$C.

1H NMR (400 MHz, CDCl$_3$) δ 2.48 (s, 3H), 7.38 (d, $J = 7.6$ Hz, 2H), 7.48-7.53 (m, 4H), 7.79 (d, $J = 8.0$ Hz, 2H), 7.83-7.87 (m, 1H), 8.13 (d, $J = 8.8$ Hz, 1H), 8.69 (d, $J = 7.6$ Hz, 2H);

13CNMR (100 MHz, CDCl$_3$) δ 21.5, 121.7, 126.8, 127.1, 128.5, 128.7, 129.1, 129.3, 130.2, 130.5, 133.4, 134.9, 138.3, 140.2, 152.0, 160.2, 168.3.

2-(4-Methoxy-phenyl)-4-phenyl-quinazoline (3c):

![Compound 3c](image)

Compound 3c was obtained as a white solid;
yield: 90%;
mp 141-142$^\circ$C.
1H NMR (400 MHz, CDCl$_3$) δ 3.80 (s, 3H), 7.01 (d, J = 8.0 Hz, 2H), 7.39-7.44 (m, 4H), 7.75-7.80 (m, 3H), 8.05 (t, J = 7.6 Hz, 2H), 8.61 (d, J = 8.0 Hz, 2H);

13C NMR (100 MHz, CDCl$_3$) δ 54.4, 112.9, 120.6, 125.7, 125.9, 127.4, 127.6, 128.1, 129.1, 129.4, 130.8, 132.3, 137.3, 151.1, 159.1, 160.2, 166.6.

2-(4-Chloro-phenyl)-4-phenyl-quinazoline (3d):

![Diagram of compound 3d]

Compound 3d was obtained as a white solid;

yield: 75%

mp 139-140°C.

1H NMR (400 MHz, CDCl$_3$) δ 7.50-7.60 (m, 6H), 7.86-7.87 (m, 3H), 8.08 (d, J = 8.4Hz, 1H) 8.12 (d, J = 8.4Hz, 1H), 8.64 (d, J = 8.8 Hz, 2H);

13C NMR (100 MHz, CDCl$_3$) δ 121.5, 123.5, 126.6, 127.2, 128.6, 128.7, 128.9, 129.3, 130.6, 131.5, 133.7, 136.1, 138.0, 152.0, 160.2, 167.1;

4-Phenyl-2-p-tolyl-quinazoline (3e):

![Diagram of compound 3e]

Compound 3e was obtained as a white solid;

yield: 83%;

mp 189-190°C.
1H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.50 (dt, J = 0.8, 7.2 Hz, 1H),
7.58-7.60 (m, 3H), 7.84-7.89 (m, 3H), 8.11 (dt, J = 0.4, 9.6 Hz, 2H), 8.58 (d, J = 8.0 Hz, 2H);

13CNMR (100 MHz, CDCl₃) δ 21.6, 121.6, 126.7, 127.0, 128.5, 128.7, 129.1, 129.3, 129.8, 130.2,
133.5, 135.5, 137.8, 140.7, 152.0, 160.4, 168.2

2, 4-Di-p-tolyl-quinazoline (3f):

Compound 3f was obtained as a white solid;
yield: 80%

mp 139-140°C.

1H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 2.48 (s, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 7.6 Hz, 2H), 7.50 (dd, J = 7.2, 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.84 (dd, J = 6.8, 8.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 2H), 8.58 (d, J = 8.4 Hz, 2H);

13CNMR (100 MHz, CDCl₃) δ 21.5, 21.6, 121.6, 126.7, 127.1, 128.6, 129.0, 129.2, 129.3, 130.2,
133.3, 134.9, 135.6, 140.1, 140.6, 152.0, 160.3, 168.2;

4-(4-Methoxy-phenyl)-2-p-tolyl-quinazoline (3g):

Compound 3g was obtained as an off white solid;
yield: 88%;
mp 153-155°C

1H NMR (400 MHz, CDCl$_3$) δ 2.43 (s, 3H), 3.90 (s, 3H), 7.10 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 7.6 Hz, d, 2H), 7.50 (t, J = 7.6 Hz) 7.82-7.87 (m, 3H), 8.10 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8.57 (d, J = 7.6 Hz, 2H);

13CNMR (100 MHz, CDCl$_3$) δ 21.5, 55.5, 114.0, 121.6, 126.6, 127.0, 128.6, 129.1, 129.3, 130.3, 131.8, 133.3, 135.6, 140.6, 152.1, 160.3, 161.2, 167.6;

4-(4-Chloro-phenyl)-2-p-tolyl-quinazoline (3h):

![Chemical Structure of 3h](image)

Compound 3h was obtained as a off white solid;

yield: 78%;

mp 150-151°C

1H NMR (400 MHz, CDCl$_3$) δ 2.44 (s, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.53-7.58 (m, 3H), 7.82-7.87 (m, 3H), 8.05 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.56 (d, J = 8.0 Hz, 2H);

13CNMR (100 MHz, CDCl$_3$) δ 30.9, 121.3, 126.5, 126.9, 128.6, 129.2, 129.3, 131.5, 133.6, 135.3, 136.1, 136.2, 140.8, 152.0, 160.3, 166.9;

5-Fluoro-2-phenyl-4-p-tolyl-quinazoline (3g):

![Chemical Structure of 3g](image)

Compound 3g was obtained as a white solid;
yield: 77%
mp 157-158°C

1H NMR (400 MHz, CDCl$_3$) δ 2.47 (s, 3H), 7.15-7.20 (m, 1H), 7.34 (d, J = 7.6 Hz, 2H), 7.50-7.51 (m, 3H), 7.66-7.69 (m, 2H), 7.78-7.82 (m, 1H), 7.97 (d, J = 8.4 Hz, 1H), 8.66-8.68 (m, 2H);

13CNMR (100 MHz, CDCl$_3$) δ 21.5, 112.2 (d, JCF = 22 Hz), 112.6 (d, JCF = 12 Hz), 125.4 (d, JCF = 4.0 Hz), 128.5, 128.6 128.8, 129.4 (JCF = 4.0 Hz), 130.8, 133.5 (d, JCF = 9.0 Hz), 137.3 (d, JCF = 4.0 Hz), 137.6, 139.9, 153.4, 156.7 (d, JCF = 260 Hz), 160.3, 160.0 (JCF = 4.0 Hz);

5-Fluoro-2, 4-diphenyl-quinazoline (3h):

![Chemical Structure](image1.png)
Compound 3h was obtained as a white solid;
yield: 80%;
mp 149-150.8°C

1H NMR (400 MHz, CDCl$_3$) δ 7.19 (ddd, J=1.2, 8.0, 1H), 7.50-7.55 (m, 6H), 7.74-7.77 (m, 2H), 7.81-7.85 (m, 1H), 7.98 (d, J = 8.4 Hz, 1H), 8.66-8.68 (m, 2H);

13CNMR (100 MHz, CDCl$_3$) δ 112.2 (d, JCF = 22 Hz), 112.6 (d, JCF = 12 Hz), 125.4 (d, JCF = 4.0 Hz), 127.8, 128.5, 128.8, 129.3 (JCF = 4.0 Hz), 129.6, 130.9, 133.6 (d, JCF = 11 Hz), 137.5, 140.2 (JCF = 3 Hz), 153.4, 157.7 (d, JCF = 260 Hz), 160.3, 166.0 (JCF = 4.0 Hz);

2-(4-Methoxy-phenyl)-4-phenyl-quinazoline (3i):

![Chemical Structure](image2.png)
Compound 3i was obtained as a off white solid;
yield: 82%;

mp 165-166°C

1H NMR (400 MHz, CDCl$_3$) δ 3.89 (s, 3H), 7.03 (d, $J = 8.8$ Hz, 2H), 7.49 (t, $J = 8.0$ Hz, 1H), 7.57-7.59 (m, 3H), 7.82-7.88 (m, 3H), 8.09 (t, $J = 7.6$ Hz, 2H), 8.65 (d, $J = 8.8$ Hz, 2H);

13C NMR (100 MHz, CDCl$_3$) δ 55.4, 113.8, 121.4, 126.5, 127.0, 128.5, 128.9, 129.8, 130.2, 130.3, 130.9, 133.4, 137.8, 152.1, 160.0, 161.7, 168.1

2-(4-Methoxy-phenyl)-4-p-tolyl-quinazoline (3j):

![Chemical Structure]

Compound 3j was obtained as an off white solid;

yield: 82%;

mp 110-111°C

1H NMR (400 MHz, CDCl$_3$) δ 2.49 (s, 3H), 3.89 (s, 3H), 7.03 (d, $J = 8.4$ Hz, 2H), 7.40 (d, $J = 7.6$ Hz, 2H), 7.49 (t, $J = 7.6$ Hz, 1H), 7.79 (d, $J = 8.0$ Hz, 1H), 7.84 (t, $J = 7.6$ Hz, 1H), 8.10 (t, $J = 8.0$ Hz, 2H), 8.65 (d, $J = 7.6$ Hz, 2H);

13C NMR (100 MHz, CDCl$_3$) δ 21.5, 55.4, 113.8, 121.5, 126.4, 127.1, 128.9, 129.2, 130.1, 130.3, 130.9, 133.4, 134.9, 140.1, 152.2, 160.0, 161.7, 168.2;

Biological Activity

Antibacterial activity

Antimicrobial screening The samples of synthesized Compounds (3a-3j) for antimicrobial activity were prepared at concentration 40μg/ml in DMSO solvent. In case of antibacterial activity, the plates were incubated at 37°C for 24 hours and for antifungal activity the plates were incubated at 30°C for 48 hours. The antibacterial activity was checked against Gram positive bacteria Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis), Gram negative bacteria Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The
antifungal activity was checked against fungi Aspergillus niger (A. niger) and Candida albicans (C. albicans). The results were compared with stand drugs Sparfloxacin, Benzyl penicillin and Fluconazole. The Quinazoline derivates containing core structure with fluoro and methyl (8g) and –F (8h) showed more activity than other substituent’s 3g>3h>3i>3j>3f >3 d >3b>3a>3c>3e.

Antibacterial activity of Novel Compounds (8a-8j) :

Table 4 In vitro antibacterial and antifungal activities of the synthesized compounds (3a-3j):

<table>
<thead>
<tr>
<th>Compound</th>
<th>Staphylococcus aureus</th>
<th>Bacillus subtilis</th>
<th>P. aeruginosa</th>
<th>E. coli</th>
<th>A. niger</th>
<th>C. albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>12</td>
<td>11</td>
<td>07</td>
<td>11</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>3b</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>14</td>
<td>09</td>
<td>12</td>
</tr>
<tr>
<td>3c</td>
<td>10</td>
<td>28</td>
<td>17</td>
<td>21</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>3d</td>
<td>13</td>
<td>17</td>
<td>30</td>
<td>13</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>3e</td>
<td>10</td>
<td>19</td>
<td>09</td>
<td>09</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>3f</td>
<td>16</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>3g</td>
<td>23</td>
<td>13</td>
<td>18</td>
<td>15</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>3h</td>
<td>19</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>3i</td>
<td>18</td>
<td>16</td>
<td>08</td>
<td>08</td>
<td>17</td>
<td>09</td>
</tr>
<tr>
<td>3j</td>
<td>16</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Sparfloxacin</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>22</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Benzyl penicillin</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Results and discussions

Quinazolin-4-ones (1 equiv) in THF (2 ml) was treated with Tosyl chloride (1.2equiv) and Na₂CO₃ (2.5 equiv) at 60°C. After 30 minutes, boronic acid (1.2equiv), Pd(PPh₃)₂Cl₂ (0.05 equiv. 5 mol%), and H₂O (0.1ml) were added under air atmosphere. The reaction was completed within 2-4 hours to afford the corresponding derivativeNovel Quinazoline derivatives (3a-j) in excellent yields as shown in the general Scheme 1. To optimize the reaction conditions, we have studied the role of the catalyst Pd(PPh₃)₂Cl₂ using in different mole ratio. The observation shows that 5 % mole equivalent of Pd(PPh₃)₂Cl₂ is sufficient for the completion of reaction. The structures of the products were identified by their ¹H & ¹³C NMR, IR and mass spectral analysis.

CONCLUSION

All these reactions are very easy to carry out giving high yield. An efficient route to 4-arylquinazolines via arylation of quinazolin-4-ones under mild condition is described. The reaction is carried out by the palladium-catalyzed coupling of quinazolin-4ones with aryl boronic acids in the presence of TsCl leading to 4-arylquinazolines in good to excellent yields.

Acknowledgments

Authors are thankful to our research supervisor xxx-xxxx for providing us required facilities and motivation for completion of the Research work. We also extend our gratitude towards Department of chemistry, Sri XXXX-XXXX University for providing us facilities of IR Spectra, ¹H NMR for characterization of novel synthesized compounds.

REFERENCES

