Research Article
CODEN: IJPRNK
IMPACT FACTOR: 1.862
ISSN: 2277-8713
IJPBS

Paul A, IJPRBS, 2014; Volume 3(3): 380-395

INTERNATIONAL JOURNAL OF
PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

CELL VIABILITY AND CELL CYCLE ANALYSIS ON CANCER CELL LINES AND EVALUATION OF ANTICANCER PROPERTIES OF INDIAN MEDICINAL PLANTS
PAUL A, MANJULA
Department Of Biotechnology, Affiliated of Bangalore University, M.S. Ramaiah College of Arts, Science & Commerce, MSRIT Post, Bangalore-560054, Karnataka, India.
Accepted Date: 10/06/2014; Published Date: 27/06/2014

Abstract: In the present study, six Indian medicinal plants (Bridelia retusa; Schleichera oleosa; Pseudarthria viscida; Guazuma ulmifolia; Gardenia gummifera; Wardwickia binata) are mainly focused for cytotoxicity and anti-proliferating property. Crude methanol extract is obtained for each plant extract using a soxhlet apparatus. 10 mg/ml of extracts of each plant are tested for MTT assay using Calu-6 and HL-60 cells. Based upon the result MTT assay Bridelia retusa and Pseudarthria viscida were selected for wound healing assay and cell cycle analysis using Calu-6 cells. In wound healing assay the migration effect is determined. In case of cell cycle analysis, percentage is determined for the plant- Bridelia retusa and Pseudarthria viscida. Bridelia retusa and Pseudarthria viscida showed cytotoxicity and anti-proliferating property for the cancer cell mainly in Calu-6 cells. Hence Bridelia retusa and Pseudarthria viscida selected for further assay on the extracts pharmacokinetics and toxicology study should be carried out to support this in vitro assay before in vivo or clinical test is being carried out.

Keywords: Medicinal plants, Cancer cell lines, MTT assay, Cell Cycle analysis, Wound Healing assay, plant extract preparation.

Corresponding Author: MR. ANUBRATA PAUL
Access Online On:
www.ijprbs.com
How to Cite This Article:
Paul A, Manjula; IJPRBS, 2014; Volume 3(3): 380-395

Available Online at www.ijprbs.com
INTRODUCTION

Plants have been major source of medicine in all cultures from ancient times. By continuous process of trial and selection, primitive man has learnt to use certain plant juice and crude extracts as antidotes for human disorders. Plants have contributed hugely to Western medicine, through providing ingredients for drugs or having played central role in drug discovery. Some complex diseases, natural products still represent an extremely valuable source for the production of new chemical entities. Most of the natural products found in medicinal plants are the compounds biosynthetically derived from primary metabolites such as amino acids, carbohydrates and fatty acids and categorized secondary metabolites. The roots, seeds, leaves, barks, stems etc may perform specific physiological action in the human body. Alkaloids, compounds of carbon, hydrogen, oxygen and nitrogen, glycosides, essential fatty oils, gums, resins, tannins, mucilage etc are very important substances to use.

An abnormal growth of cells which tend to proliferate in an uncontrolled way and to metastasize is called as cancer. The cancer—causing changes in DNA, called mutations can be inherited and may be caused by environmental factors. In Karnataka there would be about 1.5 lakhs cancer cases at any given time and about 35000 new cancer cases are added to this pool each year. Carcinoma, sarcoma, leukemia, lymphoma, myeloma, central nervous system cancers are the different types of cancer. Surgery, chemotherapy, radiation therapy, targeted therapy, immunotherapy, hyperthermia, bone marrow and peripheral blood stem cell transplant are the respective treatment procedures. Most drugs intended for cancer therapy are not specific to target cancer cells and may be highly toxic to normal, surrounding tissues.

The existence of traditional medicine depends on plant species diversity and the related knowledge of their use as herbal medicine. In addition both plant species and traditional knowledge are important to the medicine trade and the pharmaceutical industry whereby plants provide raw material and the traditional knowledge prerequisite information. Modern research proves the efficacy of some plants such as astragalus, eleutherococcus, shisandra and shiitake mushroom and many of the plants used traditionally in herbalism. Allium sativum (Garlic), Aloe barbadensis (Aloe vera), Beta vulgaris (Beetroot), Camellia sinensis (Green Tea), Erytroxylum coca (Coca), Lycopersicon esculentum (Tomato), Ricinus communis (Castor oil), Vitis vinifera (Grape) are the particular plants that effect certain types of cancer by improving specific physiological functions.

MATERIALS AND METHODS

Collection of Plant material— Medicinal plants which belong to the different family are used in the study. Healthy, disease free mature leaves/seeds/rots are collected in and around Bangalore, Karnataka (India) and use for preparation of extract.
Selected Plants - Bridelia retusa (G7PO058); Schleichera oleosa (G7GL063); Pseudarthria viscosa (G7CD068); Guazuma ulmifolia (G7LM069); Gardenia gumifera (G7BR078); Wardwickia binata (G7WT060).

Preparation of extracts

Soxhlet extraction – The desired compound has a limited solubility in a solvent and the impurity is insoluble in that solvent. Soxhlet extractor, plant materials, methanol, Whatman filter paper, glass beads are used as materials. According to standard procedure, 10 gms of solid material of a desired plant is weighed and packed in a Whatman filter paper (Thimble). The thimble is loaded in a main chamber of soxhlet and stirrer bar is placed with methanol solvent and 2-3 glass beads. Soxhlet is then equipped with a condenser and solvent is heated to reflux. The desired compound will dissolve in the warm solvent. When soxhlet chamber is almost full, automatically emptied by siphon side arm, the extract is collected in a still pot. The cycle is repeated for 48 hours. When the desired compound is concentrated in the flask, compound is collected and evaporated to preserve.

Stock solution preparation – 10 mg of extract is dissolved in 1 ml of DMSO.

Biological Assay –

Cell Culture - The Human cell line (Calu-6) and Human acute myelocytic leukemia cell line (HL-60, suspension) are obtained from American Type Culture Collection (ATCC). The cells are grown in DMEM containing 2 mM L-glutamine supplemented with 10% fetal bovine serum and 100 U/ml of Penicillin – Streptomycin. The cells are incubated at 37°C in a humidified 5% CO₂ incubator.

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>Tissue</th>
<th>Morphology</th>
<th>Cell type</th>
<th>Growth Properties</th>
<th>Split Ratio</th>
<th>Fluid Renewal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calu-6</td>
<td>Lung</td>
<td>Epithelial</td>
<td>Carcinoma</td>
<td>Monolayer</td>
<td>A ratio of 1:2 to 1:8</td>
<td>2 to 3 times weekly</td>
</tr>
<tr>
<td>HL-60</td>
<td>Blood , peripheral</td>
<td>Lymphoblast</td>
<td>Acute promyelocytic leukemia</td>
<td>Suspension</td>
<td>A ratio of 1:2 to 1:8 is recommended</td>
<td>Every 2 to 3 days</td>
</tr>
</tbody>
</table>

Available Online at www.ijprbs.com
In Vitro Assays

Cytotoxicity Assay (MTT Assay)

This assay measures the reduction of yellow 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) by mitochondrial succinate dehydrogenase. MTT enters the cells and passes into the mitochondria where it is reduced to an insoluble, coloured (dark purple) formazan product. The cells are then solubilized with an organic solvent (isopropanol) and the released, solubilized formazan reagent is measured spectrophotometrically. 96-well plate, multi-channel pipette, cell lines, MEM medium, DMSO, Trypsin, DOX, WST dye are required as materials. According to the standard procedure, the used medium has removed from T-25 flask. The cells are trypsinized at 500 rpm for 5 min by adding 2 ml of trypsin. The pallet is resuspended in 2 ml completed media. Cells are diluted to 10,000 cells per ml and use complete media to dilute cells. 100 ul of cells are added into each well. The first two wells were taken as a blank, next two follow by DMSO. DOX is added to next two wells as a standard compound. Plant extracts are added to the next followed wells respectively and incubate for 48 hours. WST dye is added to all wells. After 2 hours incubation, OD at 490 nm is read using ELISA reader.

Wound Healing Assay

The Assay is simple, inexpensive and earliest developed method to study directional cell migration in vitro. It mimics cells migration during wound healing in vivo. The basic steps involve creating a “wound” in a cell monolayer, capturing the images at the beginning and at regular intervals during cell migration to close the wound, and comparing the images to quantify the migration rate of the cells. Calu-6 cell line, 24-well plate, MEM, micropipette tips, DMSO, DOX, G7PO032, G7WT049 are required for the assay as materials. According to the standard procedure, the cells are seeded in a 24-well plate (each well contain 1 lakh cells per ml) for 48 hours. The used media is removed from the wells using pipette tip a straight scratch is made, simulating a wound. 1 ml of media is added to all wells except the first one (control). 10 ul of DMSO, DOX, G7PO032 and G7WT049 are added from second well respectively and incubate for 48 hours. The plate is observed under inverted microscopes for every 12 hours.

Cell Cycle Assay

Cell cycle analysis is a method in cell biology that employs flow cytometry to distinguish cells in different phases of cell cycle. Before analysis, the cells are permeabilised and treated with a fluorescent dye that stains DNA quantitatively, usually Propidium Iodide (PI). The fluorescence intensity of the stained cells at certain wavelengths will therefore correlate with the amount of DNA they contain. As the DNA content of cells duplicates during the S phase of the cell cycle, the relative amount of cells in the G0 phase and G1 phase (before S phase), in the S phase and
the G₂ phase and M phase (after S phase) can be determined, as the fluorescence of the cells in the G₂/M phase will be twice as high as that of cells in the G₀/G₁ phase. Cell cycle anomalies can be symptoms for various kinds of cell damage, for example DNA damage, which cause the cell to interrupt the cell cycle at certain checkpoints to prevent transformation into a cancer cell (carcinogenesis). FACS, 96-well plate, micropipette tips, eppendorf tubes, Calu-6 cell line, DMSO, DOX, PBS, Trypsin, MEM, G70032, G7WT049 are required as materials for the cell cycle analysis assay. The cells are seeded in a 96 well plate (20000 cells per well). The compounds G70032, G7WT049 are tested for different concentration (50ul, 100ul, 200ul) and incubate for 24 hours. The cultured medium is removed from the wells. 20ul of trypsin is added to each well. The cells are scraped using pipette tips and then add 100ul of medium to each well and cells from each well are transferred to eppendorf tube respectively. Then 100ul of medium is added to each eppendorf tuber and incubate for 5 minutes and centrifuge for 5000 rpm 4°C for 10 minutes. The pellet is dissolved in 200ul of PBS. Then again centrifuge for 5000 rpm 4°C for 10 minutes. The pellet is resuspended in 400ul of PI and transferred to flow cytometer tube and keep in refrigerator for 30 minutes. The result is analysed using flow cytometer.

RESULTS

MTT ASSAY

\[
\text{% viability} = \left(\frac{\text{OD of test material}}{\text{OD of control}} \right) \times 100
\]

\[
\text{% Inhibition} = 100 - (\% \text{ Viability})
\]

Table 2

<table>
<thead>
<tr>
<th>Cytotoxicity assay using MTT _ calu-6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test material</td>
<td>Conc^n_ (µg/ml)</td>
</tr>
<tr>
<td>Vehicle control (1% DMSO)</td>
<td>0</td>
</tr>
<tr>
<td>Dox</td>
<td>100</td>
</tr>
<tr>
<td>58</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
Table-3

Cytotoxicity assay using MTT_ HL 60

<table>
<thead>
<tr>
<th>Test material (n=2)</th>
<th>Conc(^n) (µg/ml)</th>
<th>OD at 570 nm</th>
<th>Avg. OD</th>
<th>SD</th>
<th>% Viability</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle control(1% DMSO)</td>
<td>0</td>
<td>0.82</td>
<td>0.920</td>
<td>0.14</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.41</td>
<td>0.410</td>
<td>0.00</td>
<td>44.57</td>
<td>55.43</td>
</tr>
<tr>
<td>Dox</td>
<td>100</td>
<td>0.67</td>
<td>0.635</td>
<td>0.05</td>
<td>69.02</td>
<td>30.98</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>0.62</td>
<td>0.660</td>
<td>0.06</td>
<td>71.74</td>
<td>28.26</td>
</tr>
<tr>
<td>63</td>
<td>100</td>
<td>0.77</td>
<td>0.805</td>
<td>0.05</td>
<td>87.50</td>
<td>12.50</td>
</tr>
<tr>
<td>68</td>
<td>100</td>
<td>0.63</td>
<td>0.655</td>
<td>0.04</td>
<td>71.20</td>
<td>28.80</td>
</tr>
<tr>
<td>69</td>
<td>100</td>
<td>0.41</td>
<td>0.470</td>
<td>0.08</td>
<td>51.09</td>
<td>48.91</td>
</tr>
</tbody>
</table>
Basically, MTT Assay is based on the ability of viable cells with active mitochondrial to produce succinate dehydrogenate enzyme which cleave the tetrazolium rings of MTT where the optical density (OD) obtained is proportional to the number of healthy viable cells. In the study, HL-60 (Table: 3.1.1), Calu-6 (Table: 3.1.2)) are treated with 6 plant extracts at 10 mg/ml concentrations for 48 hours.

Based on data collected from experiments in three cell lines anti proliferation effect is evaluated. Percentage of cell inhibition of Calu-6 treated with compound 58 and compound 68 extract indicating that cytotoxic effects are more compared to HL-60 cell line.

Wound Healing Assay

Scratch Wound healing Assay has been widely adapted to study the effects of a variety of experimental conditions for instance, gene – knockdown or chemical compound treatment on cell migration and proliferation. In some cases also single cell migration can be analyzed. This assay is imaged using 10X Phase contrast objective. Factors that alter the motility or growth of the cell can lead to increased or decreased rate of “healing” of the gap. In the assay, the Calu-6 cells are tested on 24–well plate using compound 32 and compound 49 and observed under inverted microscope at 10X for 0 hour and 48 hours.

Maximum migration and cell interaction is observed in untreated, migration rate is moderate for the compound 49 compared to compound 32 however DOX (standard) show 0% migration.
Cell Cycle Analysis

Flow cytometry is a rapid method to study the cell cycle and DNA content of thousands of individual cells by measurement of light scattering and fluorescence. This method is based on using specific DNA staining dye such as Propidium Iodide (PI), which are applied in the study to monitor physiological status of the cells. In the first part of this study, method routinely used in the in vitro cytotoxicity testing has been applied the MTT test and Wound Healing Assay. The result is further verified by the flow cytometry assay. Cell cycle analysis of drug-treated cells, using flow cytometry, revealed the presence of a distinct cell cycle region below the G_0/G_1 region. This “sub-G_1” peak, displaying particles with lower DNA content, represents apoptotic bodies with their characteristic reduced volume and nuclear condensation.

While the percentage of apoptosis after exposure to 10 mg/ml of compound 32 and compound 49 for 48 hours is shown (Table: 3.3.1) below. More significant increase of apoptosis is observed in Calu-6 cells treated with compound 32 and compound 49.

Table 4

<table>
<thead>
<tr>
<th>% Gated</th>
<th>UT</th>
<th>DOX</th>
<th>Comp 58</th>
<th>Comp 68</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>G_0/G_1</td>
<td>69.25</td>
<td>22.01</td>
<td>6.97</td>
<td>52.81</td>
</tr>
<tr>
<td>Phase</td>
<td>G2-M</td>
<td>G2-M</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>9.79</td>
<td>9.63</td>
<td>4.43</td>
<td>9.50</td>
</tr>
<tr>
<td></td>
<td>14.79</td>
<td>59.63</td>
<td>85.65</td>
<td>27.60</td>
</tr>
</tbody>
</table>

Histogram Statistics:
- File: CaluUT
- Sample ID: CaluUT
- Tube: Untitled
- Acquisition Date: 06-Dec-12
- Gated Events: 3022
- Total Events: 100000
- Parameter: FL2-A (Linear)
DISCUSSION

There is a growing interest in identifying plant-based anticancer drugs ever since their possible use in modern medicine was suggested. In this paper, the in vitro cytotoxic and anti-proliferation activities of the six plant extracts were tested. It should be noted that MTT assay can only detect formation of tetrazolium salt (presumably due to mitochondrion activity) but cannot differentiate the modes of death. Although the morphology of the dying cells closely resembles the classical changes attributed to an apoptotic mode of death. For this reason, the mode of cell death was determined by examining well-characterized apoptosis markers by flow cytometry and by wound healing assay.

In MTT assay the absorbance reading after 48 hours showed more significant effect on comp 58 and comp 68. This observation was supported by a study that shows cytotoxic and anti-tumour activities of *Bridelia retusa* against Erlich’s ascites carcinoma cells bearing mice and studies of antiviral activity and cytotoxicity of *Bridelia retusa* and *Pseudarthria viscida*. The two extracts used showed a cytotoxic effect on Calu-6, and HL60 cells. In an attempt to determine the anti-proliferative effects of the extract tested, concentration of 10 milligram/ml of dox as positive control on Calu-6 cells was used. However, the wound healing assay test showed lower percentage of migration of the cells when treated with comp 58 and comp 68.

In the present study, direct growth inhibitory effect of the comp 58 and comp 68 at different concentrations (50, 100 and 200µl) were studied. The cell cycle analysis revealed good result in apoptosis peak, after 24 hours of incubation for 100µl concentration.

The findings outlined above had demonstrated that both the comp 58 and comp 68 possessed a potent cytotoxic and anti-proliferation action at concentration (10 milligram/ml). Higher doses of the extracts were found to exhibit pronounce cytotoxic and anti-proliferation effect as assessed by the MTT reading. However, cytotoxic indexes obtained using the MTT assay were supported by the results those obtained with the wound healing assay and cell cycle analysis at which the migration and viability of cells moderate dramatically for both extracts at 10 milligram/ml.
However, in wound healing assay test showed lower percentage of migration of cells for the comp 58 and comp 68 for 10 milligram/ml. In case of cell cycle analysis percentage of apoptosis was more for comp 58 compared to comp 68.

Comp 58 and Comp 68 showed more promising anti-proliferative and apoptotic activity against HL-60, Calu-6 cells, compared to Comp 63, Comp 69, Comp 78 and Comp 60. Besides, the inhibition of proliferation of Calu-6 was roughly constant over a wide concentration range (25-100 milligram/ml) for Comp 58 and Comp 68. Since extracts which regulate apoptosis and overcome apoptosis deficiency of cancer cells are of high medical significance, further chemical and biochemical studies are currently under way.

This current study has effectively that these Indian medicinal plants have a good anti-leukemia potential with less or no toxic effects towards healthy immune system. Comp 58 and Comp 68 methanol extract have been successfully exhibited to be cytotoxic towards Calu-6 cell lines. Further assay on the extract’s pharmacokinetics and toxicology study should be carried out to support this in vitro assay before in vivo or clinical test is being carried out.

CONCLUSION

Identification and selection of 6 Indian medicinal plants for anticancer properties.

Optimization of extraction method for active from Indian medicinal plants for anticancer properties.

Functional assays for the anticancer properties of different solvent extract/active principles by in vitro cell based assay.

Cell proliferation and cell distribution studies using flow cytometry from active extracts/compounds.

ACKNOWLEDGEMENT

Our project work has been supported by many people whose kind advice and encouragement were indispensable throughout the period of my project work and I would like to extend my sincere thanks to all of them. We thankfully acknowledge the support and encouragement offered by my project guide Dr. Manjula, Research Scientist, G7 SYNERGON PVT LTD, Bangalore, for giving us the wonderful opportunity to to work and study at, G7 SYNERGON PVT LTD, Bangalore. We deliver my heartly thanks to my friends whoever cooperate with me and make this duration memorable, joyful, feel me light._Our heartfelt thanks to all the lab assistants, workers and technicians for their patience in solving my problems and continuous support in providing the needed inputs. Finally, we thank our families and friends who have been a source of constant love and encouragement throughout this endeavor.
REFERENCES

Proceedings of the Indian Academy of Sciences, Section A, 57 (2). pp. 115-120.

